skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "McMahon, Taegan_A"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract Batrachochytrium dendrobatidis(Bd), an aquatic pathogenic fungus, is responsible for the decline of hundreds of amphibian species worldwide and negatively impacts biodiversity globally. Prophylactic exposure to the metabolites produced by Bd can provide protection for naïve tree frogs and reduce subsequent Bd infection intensity.Here, we used a response surface design crossing Bd metabolite prophylaxis concentration and exposure duration to determine how these factors modulate prophylactic protection against Bd in Pacific chorus frog (Pseudacris regilla) tadpoles (5 × 5 surface design) and metamorphs (3 × 3 surface design). We exposed individuals every weekday to one of five Bd metabolite concentrations or a water control for 1–5 weeks, after which all animals were challenged with live Bd to evaluate their susceptibility.Exposure to the Bd metabolite prophylaxis reduced Bd load and prevalence compared to the control for both the tadpoles and metamorphs. Increasing Bd metabolite prophylaxis concentration did not confer additional protection for either life stage, but increasing duration of exposure did benefit metamorphs by decreasing Bd prevalence but not Bd load.On average, control tadpoles and metamorphs had 66.2% and 99.4% higher Bd loads, respectively, than tadpoles and metamorphs exposed to any Bd metabolite prophylaxis.Additionally, Bd metabolite prophylaxis reduced Bd prevalence relative to controls in both tadpoles (20.5% vs. 56.3%, respectively) and metamorphs (21.9% vs. 87.5%, respectively).Synthesis and applications: The efficacy of short‐term exposures of relatively low concentrations of Bd metabolites at reducing Bd infections suggests that this approach has the potential to be scaled up to field use to aid in disease mitigation and conservation. Our results, combined with additional research on Bd metabolite prophylaxis for other amphibian species, suggest that this strategy may represent a broadly useful tool to protect at‐risk amphibian populations. 
    more » « less
  2. Abstract There is a rich literature highlighting that pathogens are generally better adapted to infect local than novel hosts, and a separate seemingly contradictory literature indicating that novel pathogens pose the greatest threat to biodiversity and public health. Here, usingBatrachochytrium dendrobatidis, the fungus associated with worldwide amphibian declines, we test the hypothesis that there is enough variance in “novel” (quantified by geographic and phylogenetic distance) host‐pathogen outcomes to pose substantial risk of pathogen introductions despite local adaptation being common. Our continental‐scale common garden experiment and global‐scale meta‐analysis demonstrate that local amphibian‐fungal interactions result in higher pathogen prevalence, pathogen growth, and host mortality, but novel interactions led to variable consequences with especially virulent host‐pathogen combinations still occurring. Thus, while most pathogen introductions are benign, enough variance exists in novel host‐pathogen outcomes that moving organisms around the planet greatly increases the chance of pathogen introductions causing profound harm. 
    more » « less